Printer friendly version Share

News Release

World’s leading supplier of niobium funds research into key steel alloying element at Saarland University

05 March 2018 University Saarland

Niobium is used in comparatively small amounts in steel production. ‘Niobium accounts for only about one in every 10,000 atoms in steel. It’s therefore all the more surprising to see what a major effect these small concentrations have. The presence of niobium makes the steel tougher meaning that it becomes more stretchable without losing its strength. Niobium also prevents steel from becoming brittle and breaking like porcelain at sub-zero temperatures,’ explains Professor Frank Mücklich from the Department of Functional Materials at Saarland University. This is particularly relevant in the case of oil and gas pipelines that have to operate at arctic temperatures. In the automotive industry, niobium acts as an alloying element in the steel used to make car body parts, so that the vehicle is able to absorb enough energy on impact to protect the passenger cabin in the event of a crash. ‘Niobium is also used in superconductors, as a number of compounds that contain niobium are able to conduct electric current without loss at low temperatures,’ explains Frank Mücklich, who also heads the Steinbeis Material Engineering Center Saarland (MECS) in Saarbrücken.

His research team specializes in performing spatial analyses of the internal structures of materials at different dimensional scales and has developed a number of three-dimensional methods for use in this field. Over the last few years, the researchers have been able to fine tune their techniques to produce a suite of closely aligned methods for the structural analysis of materials. ‘We make use of high-resolution electron microscopy as well as nano-tomography and atom-probe tomography. The information and image sequences that we produce are then fed into a computer where they are combined to generate an exact spatial representation of the material structure, in some cases right down to the level of individual atoms,’ explains Professor Mücklich.

Using their 3D analytical techniques, the researchers in Saarbrücken are now in a position to quantitatively map the internal structure of steel and to identify the mechanisms that control specific required material properties. ‘We want to understand the internal structure of steel as precisely as possible and we want to know the role the niobium atoms play in the steel’s microstructure and how this changes over the course of the steel production process. Only then will we be in a position to design the internal structure of the steel for a particular technical application and the desired properties. We would then know, for example, how to use niobium in the most effective way to produce superior material properties and how we can reduce other costly alloying elements or expensive process steps by targeted employing of niobium,’ explains Mücklich.

Professor Mücklich presented these precision 3D analytical techniques to an elite group of niobium researchers from around the world, who were invited last year to a workshop that was held on the Saarbrücken campus. The Brazilian mining company CBMM wants to encourage niobium research and is therefore supporting materials research in Saarbrücken through the project ‘Niobium in Steel’ by providing funding for a researcher for three years. The aim of the research work is not only to achieve a more detailed understanding of the mechanisms within steel, but also to improve control of the steel production process itself.

Attached files

  • Prof. Frank Mücklich, Foto: Maximilian Schlosser

New Cambridge millet Africa initiative expertsvar 2015 WCSJ-2019 TON logo FNSF ad