Printer friendly version Share

News Release

New Transient Radiation Belt Discovered at Saturn

13 September 2009 Europlanet Media Centre

Scientists using the Cassini spacecraft's  Magnetospheric Imaging instrument (MIMI) have detected a new, temporary radiation belt  at Saturn, located around the orbit of its moon Dione at about 377 000 km from the center of the planet. The discovery will be presented at the European Planetary Science Congress in Potsdam by Dr Elias Roussos on Monday 14 September.

Radiation belts, like Earth’s Van Allen belts, have been discovered at Jupiter, Saturn, Uranus and Neptune.  However, to date, it has only been possible to observe the variability of their intensity at Earth and Jupiter. Now that Cassini has been orbiting Saturn for more than five years, it has been possible to assess for the first time changes in Saturn’s radiation belts.

An international team of astronomers made the discovery analysing data from the MIMI’s LEMMS sensor, which measures the energy and angular distribution of charged particles in the magnetic bubble that surrounds Saturn.

“The most dramatic changes have been observed as sudden increases in the intensity of high energy charged particles in the inner part of Saturn's magnetosphere, in the vicinity of the moons Dione and Tethys”, said Dr. Roussos. “These intensifications, which could create temporary satellite atmospheres around these moons, occurred three times in 2005 as a response to an equal number of solar storms that hit Saturn's magnetosphere and formed a new, temporary component to Saturn’s radiation belts”, he added.

The new belt, which has been named “the Dione belt”, was only detected by MIMI/LEMMS for  a few weeks after each of its three appearances. The team believe that newly formed  charged particles  in the Dione belt were gradually absorbed by Dione itself and another nearby moon, named Tethys, which lies slightly closer to Saturn at an orbit of 295 000km.

Unlike the Van Allen belts around the Earth, Saturn’s radiation belts inside the orbit of Tethys are very stable, showing negligible response to solar storm occurrences and no variability over the five years that they have been monitored by Cassini.

Interestingly, it was found that the transient Dione belt was only detected outside the orbit of Tethys. It appeared to be clearly separated from the inner belts by a permanent radiation gap all along the orbit of Tethys.

“Our observations suggest that Tethys acts as a barrier against inward transport of energetic particles and is shielding the planet’s inner radiation belts from solar wind influences.  That makes the inner, ionic radiation belts of Saturn the most isolated magnetospheric structure in our solar system“, said Dr Roussos.

The radiation belts within Tethys's orbit probably arise from the interaction of the planet’s main rings and atmosphere  and galactic cosmic ray particles that, unlike the solar wind, have the very high energies needed to penetrate the innermost Saturnian magnetosphere. This means that the inner radiation belts will only vary if the cosmic ray intensities at the distance of Saturn change significantly.

However, as Dr. Roussos emphasised, “Outside the orbit of Tethys, the variability of Saturn's radiation belt might be enhanced in the coming years as we start approaching the solar maximum. If solar storms occur frequently in the new solar cycle, the Dione belt might become a permanent, although highly variable, component of Saturn's magnetosphere, which could affect significantly Saturn's global magnetospheric dynamics.”

 

CONTACT

Elias Roussos
Max-Planck-Institut für Sonnensystemforschung
Tel: +49 (0) 5556979457
E-mail: roussos@mps.mpg.de

 

http://meetings.copernicus.org/epsc2009/

Attached files

  • Radiation belt map of the ions with energies between 25-60 MeV, in Saturn's magnetosphere, based on several years of Cassini MIMI/LEMMS data. The structure of this radiation belt is almost perfectly stable for more than 5 years of Cassini observations, despite the intense variability of the radiation belts, outside the location of Tethys.


App animated no finger Facebook-Twitter3 Translation page link Elhuyar-kom eNEWS ad2