Printer friendly version Share

News Release

Heat loss strengthens the gyre circulation

08 June 2012 University of Bergen

A new study from the Bjerknes Centre explains decadal variations in the oceanic circulation south of Greenland and Iceland. 

South of Greenland and Iceland the oceanic circulation goes mainly anti-clockwise, similar to the winds around a low-pressure system in the atmosphere.

This oceanic circulation is called the subpolar gyre. An observational study shows that when the subpolar gyre strengthens, warmer and more saline water masses will be carried northward toward the Norwegian coastline (Hátún et al. 2005, Science).

From warm to cold water masses

The continuation of the Gulf Stream – the North Atlantic Current – carries warm and saline water masses northward (Figure 1). To reach the Norwegian Coastline, the current must cross an ocean ridge that stretches from the southernmost part of Greenland to Scotland (the Greenland – Scotland Ridge). The warm Atlantic water masses changes properties in the ocean between Greenland and Norway (the Nordic Seas) before they return southward. Cold Arctic winds and freshwater input gives the water masses an Arctic character. The Bergen Climate Model simulates the exchange of Atlantic and Arctic water masses over the ocean ridge surprisingly realistic.  

The returning cold current continues southward in the deep ocean along the American continental slope. This current does not only consist of Arctic water masses spilling over the ocean ridge, but also of cold water masses produced in the Labrador Sea between, Greenland and Canada (Figure 1). The production of these water masses increases when the Icelandic low pressure is stronger than normal and cold Arctic winds blow over the Labrador Sea.

Gyre circulation strengthens when the return current of cold water masses increases
The oceanic circulation south of Greenland and Iceland (the subpolar gyre) strengthens both when the Arctic transport over the ocean ridge increases and with stronger production of cold water masses in the Labrador Sea.

By combining the variations in these two factors with the variations in the wind over the ocean between Canada and England, the scientists from Bjerknes can explain about half of the decadal variations in the subpolar gyre (Figure 2).

http://www.bjerknes.uib.no/pages.asp?kat=8&id=2055&lang=2

Attached files

  • Figure 1: Schematic of the oceanic circulation south of Greenland and Iceland (the subpolar gyre). The warm North Atlantic Current (big red arrow) bifurcates into two currents when it approaches the ocean ridge, stretching from southernmost of Greenland to Scotland (marked as the GSR). The cold Arctic southward current, spilling over the ocean ridge (black curve), and the cold current from the Labrador Sea (green curve) constitute a deep oceanic current that follows the American continental slope (also called the Deep Western Boundary Current).


  • Figure 2: Variations in the oceanic circulation south of Greenland and Iceland (the subpolar gyre; black curve). About one third of these variations can be explained by combining the variations in the production of cold water masses in the Labrador Sea and the Arctic current spilling over the ocean ridge (green curve). By including the variations in the wind over the ocean between Canada and England, 44% of the variations in the subpolar gyre can be explained (red curve).


Facebook-Twitter3 App animated no finger eNEWS ad2 WCSJ ad Translation page link