Printer friendly version Share

News Release

Miniature Power Plants for Aircraft Bodies

14 June 2011 Vienna University of Technology, TU Vienna

Sensor networks are supposed to pervade the body shell of airplanes in the future – much like a nervous system. Thanks to a joint research project of EADS Germany and the Vienna University of Technology, these sensors do not require any external power supply.

Aircraft maintenance can be time consuming and expensive. It is much simpler if the airplane itself reports, where maintenance is required. The best solution is a sensor system, which even has its own power supply and is therefore independent of electrical wiring – and this is what has now been developed by EADS Germany, in cooperation with the Institute of Sensor and Actuator Systems at Vienna University of Technology (TU Vienna). For each individual sensor, electricity is produced by a thermoelectric generator with a small water tank, storing thermal energy. The electricity is simply generated from the temperature difference between the icy cold air in high altitudes and the air close to the ground. This new sensor technology could not only facilitate aircraft maintenance, but also increase comfort for travelers.

Energy from the “Energy Harvester Module”

Even small collisions can easily lead to damage in the body of the aircraft. On aluminum bodies, a slight dent may be visible – but on modern carbon materials, it is much harder to detect damage. Tiny, invisible cracks may appear, which are very hard to detect. With suitable sensors connected directly to the body of the aircraft, this could be constantly monitored. “A major problem with these sensors is the energy supply. Wiring up hundreds of sensors in the aircraft body is complicated and expensive”, professor Ulrich Schmid from the Institute for Sensor and Actuator Systems at TU Vienna explains. For this reason, he – together with Dominik Samson and professor Thomas Becker (EADS Germany) - developed the idea of the “thermoelectric energy harvester” as an energy source, in order to be completely independent of batteries and wiring.

Electrical Current from Differences in Temperature

When an airplane rises to an altitude of thousands of meters, the exterior wall cools down. “From the temperature difference between the exterior and the interior, we can harvest energy for the sensor element, using a thermoelectric generator”, Dominik Samson explains. In the energy-harvester module, there is a little water tank which can store the ground temperature for a while. Water is especially well suited for this task, because it can store large quantities of energy in terms of heat. The inner part of the module with the water tank is connected to the cold exterior wall via the thermoelectric generator. Therefore, a gradient in temperature arises at the generator, which can be used to create electrical voltage. During landing, it works the other way around: The plane heats up again, whereas the inner part of the module is still cold – and again, electricity can be produced.

Whenever there is no thermoelectric current, for instance right after takeoff and during the landing, sophisticated electronics controls storage and transfer of electrical energy. The electronics and the components which create electricity only take up very little space: They fit on the palm of a hand and can easily be integrated into the aircraft body. The size can be adjusted for the individual energy demand of different applications.

No Wires, no Batteries

The data collected by the sensor can be transmitted wirelessly. Wireless technology does not only make maintenance easier, it also minimizes potential causes of defect and it reduces the weight of the airplane. During one flight, the energy harvester can provide the energy of eight to ten milliwatt hours – which is sufficient for a wireless sensor. “A plane has a durability of roughly thirty years. If the sensors were operated with batteries, each of them would use up about one hundred batteries during this time”, Dominik Samson estimates. Using a large number of sensors, this would not only require costly maintenance but it would also create unnecessary amounts of waste.

The concept of generating electricity in the airplane by utilizing differences in temperature could also be used for other purposes. Sensors could monitor whether the passengers have fastened their seatbelts or whether the tables are in an upright position. At the push of a button, a wireless signal could be transmitted to the flight attendants – without expensive and complicated wiring, just powered by the body heat of the passengers. “The first and most important step has been taken. We are confident that this wireless sensor technology will travel on board of many airplanes soon”, Ulrich Schmid says.

Attached files

  • The Energy-Harvester-Module

  • Dominik Samson (left) and Professor Ulrich Schmid (right)

eNEWS6 FNSF ad expertsvar 2015 Facebook 2015 Google+ Animated gif Millet New Norwegian logo